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A new interpretational scheme is proposed for the analysis of molecular wavefunctions. 
Starting from the molecular density operator we first construct a minimal set of MAOs 
from the requirement that the MOs can be represented as closely as possible by the 
MAOs. We then use the MAOs to compute atomic occupation numbers N and shared 
electron numbers o. The molecular density is then discussed in terms of N and o. This 
approach has the following advantages: 1) it is generally applicable, 2) the quantities 
N and o are virtually basis set independent, 3) the quantities N and o fulfil the intuit- 
ively expected boundary conditions, 4) the simultaneous consideration of N and o 
allows for a more reliable description of chemical bonding than consideration of 
atomic charges only. 
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1. Introduction 

The characterization of an electronic molecular wavefunction by a small set of quanti- 
ties referring to atoms and bonds - like atomic gross charges and overlap populations 
obtained from a population analysis [1-6] - provides the simplest analysis of a molecule 
in a given electronic state. A population analysis cannot be derived from the principles 
of Quantum Mechanics, however, since "atomic charges" - to give an example - are not 
measurable quantities of a molecule. Some arbitrariness is consequently inevitable if we 
want to discuss a molecule in terms of atoms and bonds. 

In order that an interpretational scheme is physically and mathematically adequate, it 
appears reasonable to require that the following conditions are met 

1) internal consistency and general applicability 
2) certain boundary conditions should be met (e.g. the gross charge of an AO should 

be positive and smaller or equal to two) 
3) features of chemical bonding should be reflected. 

Condition 1) requires especially that the results of an analysis should not depend on 
the actual representation of the corresponding wavefunction, i.e. it should be basis set 
independent. 

The description of chemical bonding (condition 3) by quantities like the amount of 
electron sharing or the overlap population should not only reflect features of bonding 
but also indicate to which degree the atoms have lost their identity in forming a molecule. 
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This furthermore provides a measure for the uncertainties inherent in a definition of 
atomic charges. 

We note that the Mulliken Population Analysis (MPA) does certainly not meet require- 
ments 1) and 2), as will be discussed shortly in Sect. 2 of this work. 

In the present work we confine ourselves to the discussion of one-particle properties. 
This restriction appears to be reasonable since bonding is essentially a one-particle effect 
[7]. Condition 1) then requires that an analysis should be based on the one-particle density 
operator D. 

The population analysis described in this work is based on the following idea: In order 
to calculate accurate densities it is necessary to use extended basis sets which furthermore - 
for technical reasons - have no direct physical meaning in general. One therefore should 
not insist to analyze D in terms of this extended basis set but to use for this purpose a 
(different) AO basis set Cv of some physical significance [8] (the problems to define such 
a set ~v of AOs is discussed in more detail in Sect. 3). 

A necessary condition for such a procedure to be meaningful is that the Cv represent 
the original density operator D sufficiently well, which is equivalent to the condition that 
trDP~ number of electrons, where P denotes the projector onto the space spanned by 
the AOs ~o v. Besides defining a minimal AO basis with properties just mentioned, the 
difficulties of a population analysis are then essentially due to the nonvanishing interatomic 
overlap of the AOs ~v which in turn is intimately connected with chemical bonding. 

The only quantities with a direct physical meaning that can be constructed from D and 
the ~v are the occupation numbers Nvv, which are the diagonal elements of the matrix N 

Nv. -- <~v I D I~u> (1) 

D may also be specified by the matrices Q(1) and Q(2) defined as follows (we tacitly 
assume here that D may be represented by the Cv, this point will be discussed in more 
detail in Sect. 3) 

Di~ov >= ~ Q(1)xvl~x> (2) 
X 

D= ~ [~v)Q(2)v.<~[  (3) 
I),/2 

The matrices Q(1) and Q(2) are related through 

N = SQ(1) = SQ(2)S (4) 

where S denotes the overlap matrix of the ~v- 

We note that the diagonal elements Q(1)vv and Q(2)vv are usually referred to as gross 
charges and net charges of AOCv [1,2] .  As the Q(1)vv and Q(2)vv have no direct physical 
meaning it appears reasonable to base an interpretational scheme on the occupation 
numbers only. The Nvv furthermore have the advantage to depend on D and ~v only, 
whereas the Q(1)vv depend - via the overlap-matrix - on all other AOs ~v, see Eq. (4). 
A rather small change in Ctz may lead to rather drastic changes in Sv~ and, hence, in Q(1)vv 
which is the reason for the strong basis set dependence of the results of MPA. 

The use of occupation numbers for the purpose of interpretation of molecular electron 
distributions has first been proposed by Davidson [8] and recently been worked out and 
discussed by Roby [9]. 

In order to give the reader a rough idea of the procedures used in a population analysis 



Population Analysis Based on Occupation Numbers of Modified Atomic Orbitals 35 

based on occupation numbers let us discuss briefly the Ha-molecule [8]. In the MO 
description we have a doubly occupied/riO ff which is approximately given as the sum of 
the 1 s-AOs ~A, ~B of the hydrogen atoms. 

= (~A + ~B)/~/(2 + aS) (5) 

The density operator D is then 
D = 2 l ~ ) ( ~ l  (6) 

which gives the occupation N(H) (note that S ~ 0.7) 

N(H) = ( ~o A [ D [ ~o A ) = 1 + S ~ 1.7 (7) 

For a Heitler-London wavefunction one obtains [8] 

1 + 3 S  2 
~ 1.66 (8)  N ( H )  = 1 + S 2 

The Eqs. (7) and (8) show in a quantitative way that in forming H a the hydrogen atoms 
have completed to a considerable extent the helium shell by electron sharing. 

The sum of occupation numbers exceeds the number of electrons, N = 2, and the excess 
o(n, H') 

o(H, H') = N(H) + N(H') - N ~ 1.4 (9) 

is a measure of the amount of electron sharing and the bond strength [8]. 

From the quantitiesN(H) and o(I-I, H') we can then compute an atomic charge R(H) in 
dividing o equally between the atoms, which is, of course, a trivial procedure for a homo- 
nuclear molecule 

R(H) = N(H) - �89 H5 = 1 

This very simple example demonstrates already how the use of occupation numbers 
allows for a discussion of terms like "completion of noble gas shells" by "electron sharing", 
which play an important role in the thinking of chemists. 

2. Population Analysis Based on Occupation Numbers 

In this section we first repeat briefly some basic definitions (e.g. of the occupation N(A) 
of atom A) which were already given by Davidson [8] and by Rob)' [9], and then discuss 
some properties of the corresponding quantities. 

The considerations of this section are rather formal since we essentially show that the 
various quantities fulfil the expected boundary conditions and inequalities as required in 
condition 2) introduced in the introduction. 

Let Cv denote the set of AOs which is to be used in the interpretation of the molecular 
density. Without loss of generality we may assume that AOs corresponding to the same 
atom are orthonormal: 

if~v, ~,  are centered on the same atom. 

The projection operator Pa onto the space spanned by the Cv of atom A is then given as 

PA = ~ I ~ > < ~ l  (11) 
v ~ A  
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Let SAB denote the overlap matrix of the set of AOs of atom A and B 

(SAB)v u = (~Ov [ hO ~ ) v, U E A, B (12) 

The projection operator PAB onto the space spanned by the AOs of A and B is then 

PAB = E I~0v) (SA1)v# {tp# 1 (13)  
p, # 

We similarly construct" the projection operators PABC, PABCD . . . . .  associated with a triple 
of atoms A, B, C, and so on. The projection operator onto the space spanned by all AOs 
will be denoted by P 

P= ~ I~0v) (S-t)u#(~**l (14) 

s ~  = <~ t ~ )  (15) 

The analysis of D in terms of~0 v wilt only be meaningful i fD is represented by the ~o v in 
the sense of Eq. (2) or (3), which is equivalent to the requiremem 

trDP =N (16) 

where N = number of electrons. 

We now define [8, 9] the occupationN(A) of atom A: 

N(A) = trDPh (17) 

and further the "atom pair occupation" N(AB), etc. 

N(AB) = trDPAB (18) 

N(ABC) = trDPABc (t9) 

From the occupation numbers one can further compute "shared electron numbers" [9] 
corresponding to a pair of atoms, o(AB), a triple of atoms, o(ABC), which are conveniently 
defined in the following way: 

o(AB) = N(A) + N(B) - N(AB) = E N(X) - �89 ~ '  N(XY) (20) 
X X,Y 

1 ' I ~ '  
~(ABC) = E N(X) - ~',__, N(XY) + ~ ~ N(XYZ) (21) 

X X,Y X,Y,Z 

and so forth until finally all atoms are involved 

o (AB. . .  F) = E N(X) - 1 ~ ,  N(XY) + . . .  +- N ( A B . . .  F) (22) 

The sums in Eq. (20-22) are understood to run only over the atoms specified in the argu- 
ment of o on the left hand side, the primes indicate that terms X = Y etc. are omitted. 
By virtue of Eq. (16) we can rewrite (22) in the form 

1 E, N = E N(A) - ~.~ o(AB) + ~v o(ABC). . .  (23) 
A AB ABC 

as is easily verified. 

We note that the a(ABC) and a's depending on even more atoms are in general negligibly 
small except for molecules with three center bonds as H~ and B2H6. 

The form~fl definition of shared electron numbers a(AB), o(ABC) . . . . .  is, of course, based 
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O(BC) 

O{AC) ~ O ( A B }  
N(A~ O(ABC) Fig. 1. Schematic representation of atomic occupations N(A) and shared 

electron numbers a (AB), a (ABC) 

on simple set theoretical considerations as visualized in Fig. 1 for a triatomic molecule. 
Such a graphical representation breaks down, however, if some of the o's are negative. 

The corresponding shared electron numbers are intuitively expected to be related to effects 
of two center, three center bonds [9]. 

We want to point out that the quantities N(A), N(AB), o(AB) etc. have a definite meaning 
for any given set of AOs ev in the sense that they refer to the molecular density D only and 
do not depend on the actual representation of D by one or the other basis. 

A decomposition of N(AB) or o(AB) into additive contributions referring to AOs or groups 
of AOs at the respective atoms is not possible in general as is obvious from the definitions 
(12), (13), (17-20). No problems are encountered if the AOs ~u may be divided into 
mutually orthogonal sets like oAOs and 7rAOs in planar molecules. In this case one can 
immediately write down the o and n contributions to PA and PAB and then compute the 
corresponding occupations Na(A), N~(A), etc. and finally the shared electron numbers 

oa(AB) = Na(A) + No(B) - Na(AB) (24) 

o,r(AB) = Na(A) + N,r(B) - N.(AB) (25) 

which add up to the total o(AB) 

o(AB) = oo(AB) + o,(AB) 

We may consider Eq. (23) as a partitioning of the total number of electrons which 
could be used to define atomic charges. This requires the distribution of o(AB), o(ABC), 
etc. on the corresponding atoms. In the case of covalent or at least dominantly covalent 
bonds it is reasonable - though arbitrary - to divide the o's equally between the atoms 
involved. This procedure would lead to the following definition of an electronic charge 
R(A) 

R(A) = N(A) - �89 ~ o(AS) + ~ a(ABC) - . . .  (26) 
B BC 

R(A) = N (27) 
A 

If  three-center terms are negligible, Eq. (26) reduces to 

R(A) = N(A) - �89 ~ '  o(AB) (28) 
B 

The definition (26) of R(A) depends on the division of shared electrons equally between 
participating atoms, which is an arbitrary procedure. Since the present approach does not 
require a definition of an atomic charge as R(A), we will consider R(A) only occasionally. 

2.1. Properties of N(A), N(AB), o(AB) 

We now show that the quantities defined in the preceding section are formally reasonable 
in the sense that certain physically expected inequalities are in fact fulfilled. 
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Let n A denote the number of AOs at atom A. We can write down immediately the follow- 
ing obvious inequalities 

0 <~ N(A) ~< 2n A (29) 

0 ~< N(AB) ~< 2(n A + nB) (30) 

0~<N(A1 �9 �9 ' Am)~<2 ~ nA, (31) 
P=I ,rn 

and further 

N(A) <~ N(AB) < N(ABC) (32) 

From Eq. (32) and the definition of o(AB); Eq. (20), we obtain 

- N(AB) + max IN(A), N(B)I ~< o(A, B) ~< rain IN(A), N(B)I (33) 

from which one gets immediately the following bounds which are poorer, however, 

-N(AB)  + �89 [N(A) + N(B)] ~< o(AB) ~< �89 [N(A) + N(B)] (34) 

l o(AB) [ ~<N(AB) (35) 

The absolute value of the shared electron number t o(AB) I cannot exceed the occupation 
N(AB). The case 

a(AB) = +N(AB) (36) 

is in fact realized for the MO 

= (~PA +- ~B)(2 + 2S) -1/2 (37) 

in the limit 

S = ~ A  [~B> -+ 1 (38) 

The proof given by Roby [9] that o(AB) ~> 0, is not correct, the logical error is in relation- 
ship (B 15) of Ref. [9]. The inequalities (38), (39) and (45) of [9] are also at least partially 
incorrect for similar reasons. 

We mention that it can also be shown that the atomic charges R(A) defined in Eq. (26) 
fulfil the following inequality which is analogous to (29) J 

0 ~<R(A) ~< 2n h (39) 

The proof is tedious and will be omitted. 

We point out that bounds like those for N(A) and o(AB) cannot be derived in general for 
the corresponding quantities of a MPA. This is most drastically seen from the following 
quite extreme example. Consider a doubly occupied MO 

= ~ a  + ~ b  (40) 

in the limit 

S=(~0al%>= 1 (41) 

which leads to the normalization condition 

o~+/3 = 1 (42) 
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In this case one gets 

N(A) =N(B) = N(AB) = o(AB) = 2 (43) 

R(A) = R(B) = 1 (44) 

Eq. (43) expresses correctly the fact that the electrons are completely shared between ~a 
and ~b and (44) appears to be a reasonable result for an atomic charge. The MPA yields 

Q(A) = 2a Q(B) = 2/3 (45) 

PAB = 4a13 (46) 

As a and 13 may vary between +oo (Eq. (42) is the only constraint) Q(A) and Q(B) are 
totally unspecified and PAB may have any value between _oo and + 1. 

This is clearly an unreasonable example - for which the MPA was not conceived - but it 
expresses in a drastic way the dependence of  the MPA on the actual representation of  the 
wavefunction. 

3. Definition of MAOs 

The applicability of the population analysis based on occupation numbers hinges 
critically on the problem to find an AO basis set (denoted ~ in the preceding section) 
suited for this purpose. For an analysis of  HF wave function it is near at hand to use 
HF-AOs, as has been proposed by Davidson [8]. Since the HF-AOs do not span the space 
of  occupied MOs in general, one has (instead of  the desired Eq. (16)) 

trDP = N -  e, e > 0 (47) 

where e has been denoted "unassigned charge" [8].  For some diatomic molecnles investi- 
gated [8], e is typically of  the order 0.2. This shows on one hand that the HF-AOs are 
quite useful, but on the other hand it would be desirable to have a smaller unassigned 
charge, say e ~< 0.05, which would remove uncertainties in the interpretation [8]. The use 
of HF-AOs has the further disadvantage that effects like orbital contraction (or extension ) 
and polarization, which are of  vital importance for a reliable description of  chemical bond- 
ing, are not explicitly considered. 

In order to reduce the unassigned charge and to account for the change of  AOs on bond 
formation there are basically two possibilities 

1) one uses a more extended basis set 
2) one modifies the AOs to minimize e. 

Let us first consider the prospects of  employing extended basis sets. In the extreme 
limit that the atomic basis ~v oi1 atom A becomes complete one has PA = 1, compare Eq. 
(11), and consequently NA = N (total number of electrons in the molecule). The occupa- 
tion numbers would not provide any information in this case. 

From this point of  view we would not support a proposal of Roby [9],  to use the NOs 
with non-vanishing occupation of  suitable atomic states as a basis for the interpretation of  
molecular wave functions, since there are indications that these NOs form a complete set 
[10].  

Even the use of  slightly extended basis sets causes problems as is apparent from the follow- 
ing example. Roby [9] has computed atomic occupations N(A) and shared electron 
numbers o(AB) for a series of  diatomic molecules. For Li2 and B% the latter author 
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employs a set of three AOs for this purpose (Is, 2s, 2po). The result is then o(Li, Li) = 
1.74 and o(Be, Be) = 1.69. This would mean - compare with o(H, H) = 1.4, Eq. (9) - that 
rather saturated bonds should be formed in Li 2 and Be 2, which is certainly not the case 
for Be 2. Under such circumstances o could not be considered a reliable measure of bond 
strength, in contradiction with the claims of Roby [9]. 

The present authors have concluded from this kind of considerations that the AO set 
used for the interpretation of molecular densities should be kept as small as possible. This 
then necessarily requires a modification of AOs in order to keep the unassigned charge e 
sufficiently small. 

We consequently propose the following procedure. For a given density operator D we 
construct modified AOs (MAOs) ~v from the requirement 

trDP = max (48) 

which is equivalent to a minimization of e, compare Eq. (47). The projection operator 
P is obtained from the ~v according to Eq. (14). 

The MAOs determined from (48) for molecular HF densities will usually be quite close 
to the unmodified HF-AOs. Since the latter yield e < 0.2, one certainly needs only minor 
modifications to reduce e to values close to zero. 

We further conclude that it will be sufficient in general to use a minimal set of MAOs 
only. This is by no means necessary, however. We rather consider the unassigned charge e 
as an indication which helps to decide which number of  MAOs should be used. This pro- 
cedure may be explained for PH s as an example of a pentavalent phosphorous compound. 
For a set of 9 MAOs on P - corresponding to ls, 2s, 2p, 3s, 3p - and a single MAO on H 
we get e = 0.21. The rather large value of e indicates the necessity to increase the number 
of MAOs on P to 10 (yielding e = 0.03), in agreement with the conception of a penta- 
valent central atom. 

An extended set of MAOs may also be necessary for the interpretation of densities D 
obtained from correlated wavefunctions. 

We note that MAOs have originally been introduced in a different context by Mulliken 
[ 11 ]. The determination of MAOs according to (48) could be called an a posteriori 
method, for a discussion of a priori methods we refer the reader to Ref. [12]. 

Let us now describe some more details of the construction of MAOs. 

In order to maintain the atomic character of the MAOs ~v, we expand Cv in a set of 
atomic functions f , ,  in an obvious notation 

r = ~ fuCu v, for u,/1 C A (49) 
# 

For the analysis of an LCAO wavefunction it is convenient to expand the MAOs in the 
very same basis as used originally, though this is by no means necessary. 

Eq. (49) may be written in a compact form as 

,~ = f c  (so) 

where C is blocked such that 

Cv~ ~: 0 only if p E A, ,u ~ A. (51) 
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The explicit form for trDP now reads 

trDP = trNC[C+FC] -~ C + (52) 

where N is defined in (1) and F denotes the overlap matrix 

Fv. = ( f v l fu )  (53) 

The requirement (48) together with the constraint (51) specifies only the space spanned 
by the MAOs located at the same atom and the latter may therefore be chosen orthonormal 
as indicated in (10). We then have still a unitary transformation at our disposal which 
may be chosen to maintain o-zr separation. 

In the appendix we describe a generally applicable procedure to determine MAOs 
according to (48) and (49). 

4. Applications 

We will now apply the theory developed in the preceding Sects. 2 and 3. In Sect. 2 we 
have shown that a population analysis based on occupation numbers is formally reasonable, 
condition 2) of the introduction. Since the method is clearly generally applicable we now 
want to demonstrate that the PA based on occupation numbers of MAOs (as determined 
in the way described in Sect. 3) is internally consistent and also reflects the essential 
features of chemical bonding, conditions t)  and 3). 

4.1. Atomic' Populations for H 2 O, Computed with Different Basis Sets 

In this subsection we want to demonstrate that a population analysis based on occupation 
numbers of  MAOs provides a consistent and sufficiently basis set independent characteriz- 
ation of molecular densities. For this purpose we have performed a series of  HF compu- 
tations for H 20  with a number of different basis sets, taken in part from Huzinaga's tables 
[13]. The very same basis was then used in the determination of MAOs according to Eqs. 
(48) and (49). The use of identical basis sets has some obvious practical advantages but is 
by no means necessary. 

The results of these computations are listed in Table I. In the first five rows we have 
excluded polarization functions. In all these cases we find minor variations of at most 0.03 
in occupation numbers and Mulliken gross charges. 

Polarization functions were included in the remaining five tests. The atomic occupations 
now vary within the following bounds: 

N(H) = 1 . 4 1 . . .  t.46 and N(O) = 9.55 . . .  9.61 

These variations have to be compared to the corresponding ones for the gross charges: 

Q(H) = 0.76 . . .  0.85 and Q(O) = 8.31 . . .  8.50 

which are significantly larger. 

It is further instructive to consider the influence of polarization functions. The Multiken 
gross charges change on inclusion of polarization functions from Q(H) ~ 0.63 to 
Q(H) ~ 0.77 and Q(O) ~ 8.75 to Q(O) ~ 8.45, whereas the occupation numbers change 
much less, fromN(H) = 1.36 toN(H) ~ 1.44 and N(O) ~- 9.55 toN(O) ~ 9.58. The rather 
large change of atomic gross charges is internally inconsistent, since the corresponding gross 
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H O 

Basis b N R Q N R Q e 

(84/42) (4/2) e 1.36 0.79 0.63 9.56 8.42 8.75 0.002 
(84/42) (4/3) 1.36 0.79 0.63 9.55 8.41 8.74 0.002 
(84/43) (4/3) 1.36 0.79 0.63 9.55 8.41 8.74 0.002 
(95/53) (5/3) 1.36 0.79 0.61 9.54 8.40 8.77 0.002 
(106/64) (5/3) 1.36 0.80 0.62 9.53 8.39 8.76 0.002 

(84]42) (43) 
+ 1.35/0.8 1.44 0.82 0.76 9.57 8.36 8.48 0.007 
1.35, 0.35/0.8 1.44 0.82 0.76 9.61 8.36 8.48 0.005 
1.35/0.8, 0.2 1.41 0.81 0.85 9.57 8.36 8.31 0.018 

(95153) (5]3) 
1.26/0.63 1.46 0.83 0.75 9.58 8.33 8.50 0.006 
1.35/0.8, 0.2 1.44 0.83 0.80 9.55 8.33 8.40 0.012 

a Q denotes the gross charge, N and R denote atomic occupation and atomic charge as defined 
in Eqs. (17) and (26), e = unassigned charge, Eq. (47), see also text. 

b Contracted Huzinaga GTO basis [13], additional d sets on O and p sets on H are specified by 
orbital exponents 7. 

e The hydrogen basis was scaled by 1.2 in this computation. 

charges of  the polarization functions itself amount to 0.003 on H and 0.004 on 0 only. 
These small contributions consequently cannot explain the considerable variations of  the 
Mulliken gross charge, which is an artifact of  the MPA that does not reflect an electron 
shift of  this magnitude. With this statement we only criticize the application of  MPA to 
extended basis set computations for which it was not developed. 

In Table 1 we have deliberately included some tests with quite unbalanced basis sets, 
and part of  the variation of  N(H) and N(O) is certainly due to changes in the density 
matrices investigated. One would expect, however, that addition of  a second set of  polar- 
ization functions on either O or H, compare lines 6-8 of  Table 1, leads to minor changes 
in electron densities as is correctly indicated by the corresponding N(H) and N(O). Due 
to appreciable interatomic overlap integrals one may,  of  course, have more pronounced 
changes in the expansion coefficients of  MOs in terms of the basis functions which leads 
to spurious changes in the Mulliken gross charges. 

Since bonding in H 20  is dominantly covalent it appears reasonable to compute an 
atomic charge R(A) according to Eq. (26). As R(A) is derived from occupation numbers, 
it also shows no spurious changes. 

4.2. Population analysis for N2, CO, BF, Be2 

Table 2 gives the results of  a population analysis for the above mentioned molecules 
in comparison with Davidson's analysis [8] of  accurate HF-functions in terms of  atomic 
HF-AOs. Our present results are in close agreement with those of  Davidson, who has also 
demonstrated in an impressive way how occupation numbers may be used to discuss effects 
of chemical bonding. We therefore renounce on a detailed discussion and comment mainly 
on the small deviations (between Davidson's and the present results) which are due to the 
use of  MAOs instead of  HF-AOs as basis for the computation of occupation numbers. 
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Table 2. Results of population analysis for N2, CO, BF, Be2 a 

43 

N b N Q Nrr c Qrr c a an c e e b 

N2 8.26 8.46 7.0 2.74 2.0 2.92 1.40 

C 7.15 6.85 5.60 1.48 0.87 
CO 2.18 1.18 

O 9.11 9.33 8.40 3.52 3.12 

B 5.73 5.77 4.62 0.66 0.23 
BF 1.63 0.58 

F 9.58 9.86 9.38 3.92 3.76 

Be 2 - 3.97 4.0 . . . .  0.006 - 

0.001 0.18 

0.001 0.16 

0.001 

0.05 

0.19 

a For the meaning of N, Q, e see Tab!e 1 and text. A Huzinaga [13] (95/53) basis for first row 
atoms and (5/3) for hydrogen was augmented by a set of polarization functions. Number of 
MAOs is 5 for first row atoms and 1 for H. MAOs are expanded in the same basis as HF MOs. 

b Ref. [8]. 
c Corresponding ~r contributions. 

We first note that the unassigned charge e is about two orders of  magnitude smaller if  
MAOs are used instead of  HF-AOs. This removes some uncertainties in the interpretat ion 
i f  electron shifts are in the same order as e. 

As the unassigned charge is now virtually zero we expect  to get slightly larger values for 

N(A),  N(B) and especially N(A)  + N(B). This is in fact the case for N 2. Since the MAOs are 
fitted to give the best possible description of  the molecular density - and thus account for 

polarization effects - we also get a larger shared electron number o of  2.9 vs. 2.68 obtained 
by Davidson. 

For  CO, however, the carbon occupat ion is smaller (6.85 vs. 7.15) for the MAOs than 
for SCF-AOs. This can be unders tood in the following way. The formation of  CO is 
accompanied by  a contract ion of the 2p AOs of  carbon caused by a slight electron transfer 
from C to O. This effect is e.g. reflected by the HF-orbital  energies which are - 0 . 4 3  for 
2p of  C and --0.56 for the zc MOs of  CO. N(C) obtained from the HF-AOs is consequently 
larger than for the "cont rac ted"  MAOs fit ted to describe the molecular density. A reverse 
effect occurs for the oxygen atom, o f  course. Quite the same explanation applies for 
N(F)  in BF which is 9.86 (MAOs) vs.  9.58 (HF-AOs). 

A consideration of  occupation numbers of  BF is quite instructive. As N(F)  - 9.86, the 

occupation numbers show that  BF is largely ionic B(+)F ( - ) ,  since N(F)  = 10.0 would only 
be possible i f  5 MOs o f  BF can be wri t ten as pure fluorine AOs. The F -  charge cloud 
extends, however, into posit ions of  large overlap with vacant B + orbitats which gives rather 
large N(B) and o(BF). This conclusion is especially supported by the fact that  the rc contri- 
but ion to o, o~ ; 0.58, is virtually identical to the rr occupation of  boron, N~(B) = 0.66. 

Let us note that the shared electron densities decrease in the sequence N2, CO, BF in 
agreement with file trend in bond strength. This decrease is mainly caused by  decrease o f  
the shared rr-electron density (see also [8] ). 

In Table 2 we have also included a computa t ion  of  Be 2 at R = 5 a.u. A set o f  two MAOs 
yields an unassigned charge e = 0.05, which is sufficiently small. The shared electron lmmber 
is slightly negative, a = - 0 . 0 0 6 ,  in agreement with the fact that  no chemical bond is 
formed in Be 2 . This confirms our considerations of  Sect. 3 where the corresponding result 
o f  Roby [9] was discussed. 
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5. Summary 

The difficulty of interpretation is probably the most unpleasant feature of accurate 
computations of molecular electronic wavefunctions. The molecular electron distribution 
and the effects of chemical bonding may be visualized in a qualitative way by ptots of 
densities p(r) or difference densities Ao(r). A quantitative description of these effects 
requires a population analysis which necessarily suffers from its arbitrariness in defining 
atomic charges etc. Since this arbitrariness cannot be removed one should not try at all to 
describe a molecule by atomic charges only but consider a set of quantities - like occupation 
numbers and atomic charges - which then allows for a detailed discussion of chemical bonds. 

In this paper we have extended earlier considerations of Davidson [8] and Roby [9]. 
Our approach may be summarized in the following way. 

a) A set of MAOs is constructed for each atom. The MAOs are just slightly deformed 
itF-AOs, determined from the requirement that the MOs can be represented by the 
MAOs. 

b) Compute the occupation numbers N(A) of the space spanned by the orbitals associ- 
ated with the corresponding atom A, and analogously the "atom pair occupation" 
N(AB) etc., and further the shared electron number o(AB). 

c) Discussion of molecular densities based on these quantities. 
d) One can furthermore analyze the MAOs to discuss effects like orbital contraction 

(extension) and polarization. 

This approach appears to have the following advantages: 

a) The quantities N(A), N(AB) and o(AB) are virtually basis set independent. 
b) Discussion of N(A) and o(AB) allows for a reliable characterization of chemical 

bonds. 
c) The qualities N(A) and o(AB) fulfill the desired boundary conditions. 
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Appendix:  An Iterative Procedure to Determine MAOs 

In order to maximize trDP as a function of P by an iterative procedure we derive the first 
order variation of trDP: 

6trDP = tr DSP = tr D6 [i ~o)S -~ ( ~ l  ] = 

= tr {D[  18q~)S -1 ( , I  + I * ) S  -1 (6~oj - t~o)S -I  (6S )S  - t  (~Pl ] } 

= tr  ([S -I  (~o[ D - S -~ (~o{ D [go)S -1 (~o[] [ 8~o)} + 

+tr  (<6~ot [D {,)S -1 - { , ) S - X  (~olDiq~)S-1]} 

= tr {S -1 ( ,{  D(1 - P) [ ~,)}+ tr {(6,{(1 - P)D J , )S  -1 } 

= 2tr (S -1 ( , j  n(1 - P){6~o) (A1) 

The.last equality holds because trDP is a real number. 

We improve [ ~) in a steepest ascent like manner: 

}9) ~ 1 . )  + I Sop) (A2) 
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with 

r fi~o) = (1 - P ) D  j~o)S -I  (A3)  

To maintain the "atomic"  character o f  MAOs, I$9A) should only be represented by AOs 
centered on the same atom A, which is fulfilled if  we project [ ~ A )  onto the space spanned 
by the AOs of  atom A by means o f  the projection operator PA 

PA = I fA)FA 1 ( fAl (A4) 

We then get 

teA) -~ lPA) + [ fA)FA t ( fA I(1 -- P)D [~)S -1 (A5) 

The replacement (AS) maintains the orthogonatity constraint (10) in first order in ~r 
A symmetric orthogonatization [14, 15] was performed to fulfil (10) exactly. 

~Ihe convergency is about the same as in HF-computations. 
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